- 22. An electron of mass m and a photon have the same energy E. The ratio of de-Broglie wavelength associated with them is,
 - $A. \left(\frac{E}{2m}\right)^{1/2}$
 - B. c (2 mE)^{1/2}
 - C. $\frac{1}{c} \left(\frac{2m}{E} \right)^{1/2}$
 - D. $\frac{1}{c} \left(\frac{E}{2m} \right)^{1/2}$

Ans-(D)

Given that electron has a mass m.

De-Broglie wavelength for an electron will be given as,

$$\lambda_e = \frac{h}{p}$$
 ... (i)

where,

h is the Planck's constant, and p is the linear momentum of electron

Kinetic energy of electron is given by, $E = \frac{p^2}{2m}$

$$\Rightarrow$$
 p = $\sqrt{2mE}$... (ii)

From equation (i) and (ii), we have

$$\lambda_e = \frac{h}{\sqrt{2mE}}$$
 ... (iii)

Energy of a photon can be given as,

$$E = h v$$

$$\Rightarrow$$
 E = $\frac{hc}{\lambda_P}$

$$\Rightarrow \ \lambda_P = \frac{hc}{E} \qquad \dots (iv)$$

Hence, λ_P is the de-Broglie wavelength of photon.

Now, dividing equation (iii) by (iv), we get

$$\frac{\lambda_e}{\lambda_P} = \frac{h}{\sqrt{2mE}} \cdot \frac{E}{hc}$$

$$\Rightarrow \ \, \frac{\lambda_e}{\lambda_P} \, = \frac{1}{c}.\sqrt{\frac{E}{2\,m}}$$